Establishing a core collection from the integration of morpho-agronomical, phytopathological and molecular data

Francielle Alline Martins, Derly José Henriques da Silva, Pedro Crescêncio Souza Carneiro


The aim of this study was to establish and compare, as to their representativeness, core collections obtained from quantitative data, multicategoric, molecular and collections that covering all this information simultaneously. Ten subcollections were established from 67 tomato accessions of the Germplasm Bank of the Universidade Federal de Viçosa (BGH-UFV), characterized according to 19 quantitative traits, 30 multicategoric characters, 52 ISSR loci and to the reaction to three pathogens. These subcollections were defined by the combination of the nature of data collected and the sampling rate. The COD-20 subcollection stood out in 20% intensity of sampling by has higher rates of coincidence amplitude followed by more appropriate values of variance. At 30% intensity, subcollection MOL-30 was as efficient as the subcollection COD-30 when considering only the rates of coincidence of the amplitude and the variances. However, the graphical analysis of the variability showed a slight superiority of subcollection COD-30 in maintaining the variability, especially regarding multicategoric characters. So whenever data from different sources are available, should be prioritized the establishment of core collections from the integration of these data, since these were more representative when the amplitude coefficient, variance, and retention index of variability, are regarded simultaneously.


Retention rate variability; Amplitude coefficient; Germplasm; Variance

Texto completo:



ABADIE, T. et al. Construção de uma coleção nuclear de arroz para o Brasil. Pesquisa Agropecuária Brasileira, v. 40, n. 2, p. 129-136, 2005.

AGUILERA, J. G. et al. Genetic variability by ISSR markers in tomato (Solanum lycopersicon Mill.). Revista Brasileira de Ciências Agrárias, v.6, n. 2, p. 243-252, 2011.

BROWN, A. H. D. The case for core collections. In: BROWN, A. H. D.; FRANKEL, O. H.; MARSHALL, D. R.; WILLIANS, J. T. The use of plant genetic resources. Cambridge: Cambridge University Press: IPGRI, 1989, p. 136-156.

DWIVEDIL, S. L.; UPADHYAYA, H. D.; HEDGE, D. M. Development of core collection using geographic information and morphological descriptors in safflower (Carthamus tinctorius L.) germplasm. Genetic Resources and Crop Evolution, v. 52, n. 7, p. 821-830, 2005.

FRANKEL, O. H. Genetic perspectives of germplasm conservation. In: ARBER, W. K. et al. Genetic manipulation: impact on man and society. Cambridge: Cambridge University Press, 1984. p. 161-170.

GOMES, C. N. Caracterização morfo-agronômica e diversidade genética em mandioca Manihot esculenta Crantz. 2007. 82 f. Dissertação (Mestrado em Agronomia/Fitotecnia) - Universidade Federal de Lavras, Lavras, 2007.

HAO, C. Y. et al. Genetic diversity and core collection evaluations in common wheat germplasm from the Northwestern Spring Wheat Region in China. Molecular Breeding, v. 17, n. 1, p. 69-77, 2006.

HU, J.; ZHU, J.; XU, H. M. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops. Theoretical and Applied Genetics, v. 101, n. 1-2, p. 264-268, 2000.

IPGRI, Descriptors for tomato (Lycopersicon ssp). Roma, Itália: International Plant Genetic Resources Institute, 1996. 56 p.

JANSEN, J.; VAN HINTUM, T. Genetic distance sampling: a novel sampling method for obtaining core collections using genetic distances with an application to cultivated lettuce. Theoretical and Applied Genetics, v. 114, n. 3, p. 421-428, 2007.

LI, Y. et al. Establishment of a core collection for maize germplasm preserved in Chinese National Genebank using geographic distribution and characterization data. Genetic Resources and Crop Evolution, v. 51, n. 8, p. 845-852, 2004.

MARTINS, F. A. et al. Integração de dados em estudos de diversidade genética de tomateiro. Pesquisa Agropecuária Brasileira, v.46, n. 11, p.1496-1502, 2011.

OLIVEIRA, M. F. et al. Establishing a soybean germplasm core collection. Field Crops Research, v. 119, n. 2-3, p. 277-289, 2010.

SNEDECOR, G. W.; COCHRAN, W. G. Statistical Methods. 7.ed. Ames: Iowa State University, 1980. 507 p.

UPADHYAYA, H. D. et al. Phenotypic diversity in the pigeonpea (Cajanus cajan) core collection. Genetic Resources Crop Evolution, v. 54, n. 6, p. 1167-1184, 2007.

VAN HINTUM, T. J. L. et al. Core collections of plant genetic resources. Roma: IPGRI Technical Bulletin, 2000.

VASCONCELOS, E. S. et al. Estratégias de amostragem e estabelecimento de coleções nucleares. Pesquisa Agropecuária Brasileira, v. 42, n. 4, p. 507-514, 2007.

VASCONCELOS, E. S. et al. Tamanho de coleção original, métodos de agrupamento e amostragem para obtenção de coleção nuclear de germoplasma. Pesquisa Agropecuária Brasileira, v. 45, n. 12, p. 1448-1455, 2010.

WANG, J. et al. A strategy on constructing core collections by least distance stepwise sampling. Theoretical and Applied Genetics, v. 115, n. 1, p. 1-8, 2007.

WANG, L. et al. Establishment of Chinese soybean (Glycine max) core collections with agronomic traits and SSR markers. Euphytica, v. 151, n. 2, p. 215-223, 2006.

WANG, Y. et al. Construction and evaluation of a primary core collection of apricot germplasm in China. Scientia Horticulturae, v. 128, n. 3, p. 311-319, 2011.

XU, H. M. et al. Sampling a core collection of island cotton (Gossypium barbadense L.) based on the genotypic values of fiber traits. Genetic Resource Crop Evolution, v. 53, n. 3, p. 515-521, 2006.

ZEWDIE, Y.; TONG, N.; BOSLAND, P. Establishing a core collection of Capsicum using a cluster analysis with enlightened selection of accessions. Genetic Resources and Crop Evolution, v. 51, n. 2, p. 147-151, 2004.

Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site:, e-mail: - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.