Adaptability and stability of the zinc density in cowpea genotypes through GGE-Biplot method

Diêgo Sávio Vasconcelos de Oliveira, Luis José Duarte Franco, José Ângelo Nogueira de Menezes-Júnior, Kaesel Jackson Damasceno-Silva, Maurisrael de Moura Rocha, Adão Cabral das Neves, Francisco Mauro de Sousa

Resumo


Biofortification is a strategy that aims to improve the nutritional quality of foods through genetic breeding. Zinc is an important mineral for human health. It is used in various physiological processes such as immune function, antioxidant protection, growth and development. Therefore, zinc is one of the most studied minerals in the biofortification of grains in cowpea. The objective of this study was to evaluate the adaptability and stability of zinc density in the grain of 12 cowpea genotypes in four environments in the states of Piauí (PI) and Maranhão (MA), Brazil, by using the GGE-Biplot method. A randomized complete block design with four replications was used. Grain samples of each genotype were ground and the resulting flour was subjected to zinc density analysis by using an atomic flame absorption spectrophotometer. Analyses of variance were performed, and the adaptability and stability of zinc density in the grain was evaluated by the GGE-Biplot method. Genotypes showed different behavior depending on the environments tested for zinc concentration. According the GGE-Biplot method, Parnaiba-PI was the most discriminating environment for genotypes. Campo Grande do Piauí-PI and Parnaíba-PI were the most representative environments for selecting genotypes with zinc biofortification in the state of Piauí. Parnaíba-PI was the optimal environment for selection of genotypes adapted to high zinc density in grain. The cultivar BRS Xiquexique was the ideal genotype due to the high zinc density in the grain and high stability according to GGE-Biplot, followed by the lines MNC04-774F-78 and MNC04-782F-108.

Palavras-chave


Vigna unguiculata; Micronutrient; Biofortification; Genotype × environment interaction

Texto completo:

PDF

Referências


AKANDE, S. R.; BALOGUN, M. O. Multi-locational evaluation of cowpea grain yield and other reproductive characters in the forest and Southern Guinea Savanna agro-ecologies of Nigeria. Electronic Journal of Environmental, Agricultural and Food Chemistry, v. 8, n. 7, p. 526-533, 2009.

BARROS, M. A. et al. Adaptabilidade e estabilidade produtiva de feijão‑caupi de porte semiprostrado. Pesquisa Agropecuária Brasileira, v. 48, n. 4, p. 403-410, 2013.

CARVALHO, L. C. B. Interpretação da interação genótipos x ambientes em feijão-caupi usando modelos multivariados, mistos e covariáveis ambientais. 2015. 115 f. Tese (Doutorado em Genética e Melhoramento de Plantas) - Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, 2015.

DDAMULIRA, G. et al. Grain yield and protein content of Brazilian cowpea genotypes under diverse Ugandan environments. American Journal of Plant Science, v. 6, p. 2074-2084, 2015.

DIAS-BARBOSA, C. Z. M. C. Seleção de linhagens elite de feijão-caupi (Vigna unguiculata (L.) Walp.) para biofortificação de ferro e zinco e características físico-químicas do grão. 2015. 72 f. Dissertação (Mestrado em Alimentos e Nutrição) - Universidade Federal do Piauí, Teresina, 2015.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Centro Nacional de Pesquisa de Solos. Sistema brasileiro de classificação de solos. Rio de Janeiro: Embrapa Solos, 1999. 412 p.

FREIRE FILHO, F. R. et al. Feijão-caupi no Brasil: produção, melhoramento genético, avanços e desafios. Teresina: Embrapa Meio Norte, 2011. 84 p.

FRUTOS, E.; GALINDO, M. P.; LEIVA, V. An interactive biplot implementation in R for modeling genotype-by-environment interaction. Stochastic Environmental Research and Risk Assessment, v. 28, n. 7, p. 1629-1641, 2014.

GONÇALVES, A. S. F. et al. Uso da biofortificação vegetal: uma revisão. Revista do Centro Universitário de Patos de Minas, v. 6, p. 75-87, 2015.

HONGYU, K. et al. Comparison between AMMI models and GGE biplot for multi-environment trials. Revista Brasileira de Biometria, v. 33, n. 2, p. 139-155, 2015.

HOTZ, C.; BROWN, K. H. Assessment of the risk of zinc deficiency in populations and options for its control. International Zinc Nutrition Consultative Group. (Technical Document, 1). 2004. Disponível em: . Acesso em: 13 maio 2016.

MENDIBURU, F. Agricolae: statistical procedures for agricultural research. R package, version 1.2-1, 2014.

MURANAKA, S. et al. Genetic diversity of physical, nutritional and functional properties of cowpea grain and relationships among the traits. Plant Genetics Resouces: Characterization and Utilization, v. 14, n. 1, p. 67-76, 2016.

OKORONKWO, C. M.; NWOFIA, G. E. Yield stability and inter relationships between seed yield and associated traits of 25 cowpea (Vigna unguiculata [L.] Walp.) genotypes. African Journal of Agricultural Science and Technology, v. 4, n. 5, p. 728-734, 2016.

OLAYIWOLA, M. O.; SOREMI, P. A. S.; OKELEYE, K. A. Evaluation of some cowpea (Vigna unguiculata [L.] Walp.) genotypes for stability of performance over 4 years. Current Research in Agricultural Sciences, v. 2, n. 1, p. 22- 30, 2015. Parnaíba>; . Acesso em: 18 nov. 2016.

PEREIRA, T. C. et al. Research on zinc blood levels and nutritional status in adolescents with autoimmune hepatitis. Arquivos de Gastroenterologia, v. 48, n. 1, p. 62-65, 2011.

R DEVELOPMENT CORE TEAM. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2014. Disponível em: . Acesso em: 21 maio 2016.

ROCHA, M. M. et al. Avaliação dos conteúdos de proteína, ferro e zinco em germoplasma elite de feijão-caupi. Teresina: Embrapa Meio-Norte, 2008. 4 p. (Embrapa Meio-Norte. Comunicado Técnico, 212).

ROCHA, M. M. et al. Avaliação dos teores de ferro, zinco e proteína em linhagens de feijão-caupi da classe comercial branca, subclasse fradinho. Teresina: Embrapa Meio-Norte, 2011b. 4 p. (Embrapa Meio-Norte. Comunicado Técnico, 226).

ROCHA, M. M. et al. Adaptabilidade e estabilidade de genótipos de feijão-caupi para teores de ferro e zinco nos grãos. In: REUNIÃO DE BIOFORTIFICAÇÃO NO BRASIL, 4., 2011, Teresina. Anais... Rio de Janeiro: Embrapa Agroindústria de Alimentos; Teresina: Embrapa Meio-Norte, 2011a.

SANTOS, A. et al. Adaptabilidade e estabilidade de genótipos de feijão-caupi ereto via REML/BLUP e GGE Biplot. Bragantia, v. 75, n. 3, p. 55-62, 2016.

SANTOS, A. et al. Adaptability and stability of cowpea genotypes to Brazil Midwest. African Journal of Agricultural Research, v. 10, n. 41, p. 3901-3908, 2015.

VELLOZO, E. P.; FISBERG, M. A. Contribuição dos alimentos fortificados na prevenção da anemia ferropriva. Revista Brasileira de Hematologia e Hemoterapia, v. 32, n. 2, p. 140-147, 2010.

WESSELLS, K. R.; BROWN, K. H. Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PLoS ONE, v. 7, n. 11, p. 1-11, 2012.

WIKIPÉDIA, a enciclopédia livre. Disponível em: ; ;

YAN, W. GGE Biplot vs. AMMI graphs for genotype-by-environment data analysis. Journal of the Indian Society of Agricultural Statistics, v. 65, n. 2, p. 181-193, 2011.

YAN, W.; KANG, M. S. GGE Biplot Analysis: a graphical tool for breeders, geneticists, and agronomists. Boca Raton: CRC Press, 2003. 271 p.

YAN, W.; TINKER, A. Biplot analysis of multienvironment trial data: principles and applications. Canadian Journal of Plant Science, v. 86, n. 3, p. 623-645, 2006.




Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site: www.ccarevista.ufc.br, e-mail: ccarev@ufc.br - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.