Development and evaluation of a remotely controlled and monitored self-propelled sprayer in tomato crops

Édilus Carvalho Penido, Mauri Martins Teixeira, Haroldo Carlos Fernandes, Paulo Barros Monteiro, Paulo Roberto Cecon


The tomato is one of the main crops in Brazil. In large-scale cultivation, pesticides are applied to the plant to prevent the direct or indirect action of animal or vegetable life, aiming at higher productivity and better quality fruit. However, the products, if used incorrectly, may affect the health of workers involved in the activity. A prototype of a self-propelled sprayer, remotely controlled and monitored via radio signals, was therefore developed to be used in tomato crops, thus minimising worker contact with the chemical substances used when spraying. The basic prototype comprises an agricultural mini-tractor, a motorised pneumatic sprayer (atomiser) and a set of electronic and mechanical sensors and actuators, which allow the assembly to be controlled remotely and images captured by a video camera to be viewed on a tablet. After development, the principal dimension, weight and operational characteristics of the prototype were identified; the prototype was also used for spraying ten tomato plants in the crop, with seven different points being observed for each plant. The results were analysed statistically, giving the following coefficients of variation: 15.13% for spray coverage, 18.70% for droplet density and 16.68% for product deposition on the folioles. Based on these values, it was concluded that the development of a remotely controlled and monitored self-propelled sprayer prototype, and its use in spraying tomato crops, were viable.


Self-propelled agricultural machinery; Teleoperation of tractors; Spraying technology; Spraying tomato crops; Spraying evaluation

Texto completo:



ADAMIDES, G. et al. A reality-based interaction interface for an agricultural teleoperated robot sprayer. In: INTERNATIONAL CONFERENCE ON ROBOTICS AND ASSOCIATED HIGH-TECHNOLOGIES AND EQUIPMENT FOR AGRICULTURE AND FORESTRY, 2., 2014, Madrid. Proceedings... Madrid, 2014.

ALMEIDA, V. S. et al. Sistema Viçosa para o cultivo de tomateiro. Horticultura Brasileira, v. 33, n. 1, 2015.

BALL, D. et al. Robotics for sustainable broad-acre agriculture. Springer Tracts in Advanced Robotics, v. 105, p. 439-453, 2015.

BERNARDES, A. M. et al. Espectrofotometria da deposição de agrotóxico no dossel do tomateiro. Varia Scientia Agrárias, v. 4, n. 1, p. 93-104, 2014.

CAVALIERI, J. D. et al. Spraying systems and traveling speed in the deposit and spectrum of droplets in cotton plant. Engenharia Agrícola, v. 35, n. 6, p. 1042-1052, 2015.

CHUDAKOV, D. A. Fundamentos de la teoria y el cálculo de tratores y automóveis. Moscou: Mir, 1977.

CONESA-MUÑOZ, J. et al. Integrating autonomous aerial scouting with autonomous ground actuation to reduce chemical pollution on crop soil. Advances in Intelligent Systems and Computing, v. 418, p. 41-53, 2015.

COURSHEE, R. J. Some aspects of the application of insecticides. Annual Review of Entomology, v. 5, p. 327-352, 1960.

GARCIA, C. H. Tabelas para classificação do coeficiente de variação. Piracicaba: Instituto de Pesquisas e Estudos Florestais, 1989. (Circular Técnica, 171).

GOMEZ-GIL, J. et al. Steering a tractor by means of an EMG-based human-machine interface. Sensors, v. 11, n. 7, p. 7110-7126, 2011.

GONZALEZ-DE-SOTO, M. et al. Reducing fuel consumption in weed and pest control using robotic tractors. Computers and Electronics in Agriculture, v. 114, p. 96-113, 2015.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Dados da produção nacional de tomate. Levantamento Sistemático da Produção Agrícola, v. 29, n. 5, p. 74-75, 2016.

LATORRACA, A. et al. Agrotóxicos utilizados na produção do tomate em Goiânia e Goianápolis e efeitos na saúde humana. Comunicação em Ciências da Saúde, v. 19, n. 4, p. 365-374, 2008.

MIALHE, L. G. Máquinas agrícolas: ensaios & certificações. Piracicaba: FEALQ, 1996.

MOLIN, J. P. et al. Ensaio de características dimensionais, ponderais e de desempenho na barra de tração de um quadricíclo 4x4. Engenharia Agrícola, v. 22, p. 276-287, 2002.

MURAKAMI, N. et al. Development of a teleoperation system for agricultural vehicles. Computers and Electronics in Agriculture, v. 63, n. 1, p. 81-88, 2008.

PALLADINI, L. A.; RAETANO, C. G.; VELINI, E. Choice of tracers for the evaluation of spray deposits. Scientia Agricola, v. 62, n. 5, p. 440-445, 2005.

PENTAIR. Pentair Hypro Incorporation: site institucional. Disponível em: . Acesso em: 01 set. 2016.

PÉREZ-RUIZ, M. et al. Highlights and preliminary results for autonomous crop protection. Computers and Electronics in Agriculture, v. 110, p. 150-161, 2015.

QUIRINO, A. L. S. Parâmetros técnicos para aplicação do Glyphosate visando o aumento da eficácia segurança ambiental e do aplicador. 2010. 75 f. Dissertação (Mestrado em Engenharia Agrícola) - Universidade Federal de Viçosa, Viçosa, MG, 2010.

ROMEO, J. et al. Camera sensor arrangement for crop/weed detection accuracy in agronomic images. Sensors, v. 13, n. 4, p. 4348-4366, 2013.

SANKOH, A. I. et al. An assessment of the impacts of pesticide use on the environment and health in Sierra Leone. Environment International, v. 94, p. 458-466, 2016.

VIERI, M. et al. The RHEA-project robot for tree crops pesticide application. Journal of Agricultural Engineering, v. 44, n. s1, p. 359-362, 2013.

VIGANO, L. L. S.; RAETANO, C. G. Assistência de ar e volumes de aplicação na deposição de calda e no controle do arroz vermelho (Oryza sativa L.). Engenharia Agrícola, v. 27, n. 3, p. 734-741, 2007.

VIRGINIA AND WEST VIRGINIA COOPERATIVE EXTENSION SERVICES. Spray bulletin for commercial tree fruit growers. Morgantown: West Virginia University, 1989.

ZHANG, C.; NOGUCHI, N.; YANG, L. Leader–follower system using two robot tractors to improve work efficiency. Computers and Electronics in Agriculture, v. 121, p. 269-281, 2016.

Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site:, e-mail: - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.