Influence geometric anisotropy in management zones delineation

Danilo Pereira Barbosa, Eduardo Leonel Bottega, Domingos Sárvio Magalhães Valente, Nerilson Terra Santos, Wellington Donizete Guimarães, Matheus de Paula Ferreira

Resumo


The proper handling soil allows the reduction of contaminants, maximize agricultural productivity, and is directly related the knowledge spatial variability of soil attributes. This spatial variability can express isotropic and anisotropic form. The latter being neglected in research related to management zones delineation. In this context, the present study aimed to evaluate the effect of the geometric anisotropy correction on the management zone delineation. The methodology was applied under database of soybean productivity and apparent electrical conductivity (CEa) of a rural property in Ponta Porã – MS. By means of this georeferenced database, maps was interpolated with ordinary kriging. For each combination, attribute (productivity and CEa) and number of classes, were produced two maps management zones, one without and one with anisotropy correction, the same were compared through the kappa index, with significance tested by the Z-test. The management zones number was also evaluated by Fuzziness Performance Index (FPI) and the Modified Partition Entropy (MPE). The area subdivision in two management zones, without and with anisotropy correction, presented higher Kappa index, with values of 0.89 and 0.91 respectively, but not presented significant differences with each other.


Palavras-chave


Geostatistics; Anisotropy factor; Spatial variability; Apparent electrical conductivity; Soybean

Texto completo:

PDF

Referências


AGGELOPOOULOU, K. et al. Delineation of management zones in an apple orchard in Greece using a multivariate approach. Computers and Electronics in Agriculture, v. 90, p. 119-130, 2013.

ALVES, S. M. F. et al. Definição de zonas de manejo a partir de mapas de condutividade elétrica e matéria orgânica. Bioscience Journal, v. 29, n. 1, p. 104-114, 2013.

Boisvert, J. B.; Manchuk, J. G.; Deutsch C. V. Kriging in the presence of locally varying anisotropy using non-euclidian distances. Mathematical Geosciences, v. 41, n. 5, p. 585-601, 2009.

BOTTEGA, E. L. et al. Precision agriculture applied to soybean: Part III: Spatial and temporal variability of productivity. Australian Journal of Crop Science, v. 11, n. 7, p. 799-805, 2017a.

BOTTEGA, E. L. et al. Precision agriculture applied to soybean: Part I: Delineation of management zones. Australian Journal of Crop Science, v. 11, n. 5, p. 573-579, 2017b.

BOTTEGA, E. L. et al. Variabilidade espacial de atributos do solo em sistema de semeadura direta com rotação de culturas no cerrado brasileiro. Revista Ciência Agronômica, v. 44, n. 1, p. 1-9, 2013.

BOTTEGA, E. L. Utilização de zonas de manejo para a produção de soja no cerrado brasileiro. 2014. Tese (Doutorado em Engenharia Agrícola) - Universidade Federal de Viçosa, Viçosa, MG, 2014.

CHANG, D. et al. Delineation of management zones using an active canopy sensor for a tobacco field. Computers and Electronics in Agriculture, v. 109, p. 172-178, 2014.

Chorti, A.; Hristopulos, D. T. Nonparametric identification of anisotropic (elliptic) correlations in spatially distributed data sets. IEEE Transactions on Signal Processing, v. 56, n. 10, p. 4738-4750, 2008.

CID-GARCIA, N. M. et al. Rectangular shape management zone delineation using integer linear programming. Computers and Electronics in Agriculture, v. 93, p. 1-9, Apr. 2013.

Corwin, D. L. et al. Identifying soil properties that influence cotton yield using soil sampling directed by apparent soil electrical conductivity. Agronomy Journal, v. 95, n. 2, p. 352-364, 2003.

DALCHIAVON, F. C. Variabilidade espacial de atributos da fertilidade de um Latossolo Vermelho Distroférrico sob Sistema Plantio Direto. Revista Ciência Agronômica, v. 43, n. 3, p. 453-461, 2012.

Diggle, P. J.; Ribeiro JUNIOR, P. J. Model-based Geostatistics. New York: Springer, 2007. 230 p.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Sistema brasileiro de classificação de solos. 3. ed. Brasília, DF: Embrapa Informação Tecnológica, 2013. 353 p.

Facas, N. W.et al.Anisotropy in the spatial distribution of roller-measured soil stiffness. International Journal of Geomechanics, v. 10, n. 4, p. 129-135, 2010.

FAGUNDES, R. S. et al. Slash spatial linear modeling: soybean yield variability as a function of soil chemical properties. Revista Brasileira de Ciência do Solo, v. 42, Feb. 2018.

Fridgen, J. J. et al. Management zone analyst (MZA). Agronomy Journal, v. 96, n. 1, p. 100-108, 2004. Disponível em: http://dx.doi.org/10.2134/agronj2004.1000. Acesso em:22 jul. 2015.

FU, Q.; WANG, Z.; QIUXJIANG, J. Delineating soil nutrient management zones based on fuzzy clustering optimized by PSO. Mathematical and Computer Modelling, v. 51, n. 11/12, p. 1299-1305, 2010.

GUEDES, C. et al. Influence of incorporating geometric anisotropy on the construction of thematic maps of simulated data and chemical attributes of soil. Chilean Journal of Agricultural Research, v. 73, n. 4, p. 414-423, 2013.

ISAAKS, E. H.; SRIVASTAVA, R. M. An introduction to applied geostatistics. New York: Oxford University Press, 1989.

LANDIS, J. R.; KOCH, G. G. The measurement of observer agreement for categorical data. Biometrics, v. 33, n. 1, p. 159-174, 1977.

MANTO, H. Modelling of geometric anisotropic spatial variation. Mathematical Modelling and Analysis, p. 361-366, Jan. 2005.

MOLIN, J. P.; CASTRO, C. N. Establishing management zones using soil electrical conductivity and other soil properties by the fuzzy clustering technique. Scientia Agricola, v. 65, n. 6, p. 567-573, 2008.

MORAL, F. J.; TERRÓN, J. M.; REBOLLO, F. J. Site-specific management zones based on the Rasch model and geostatistical techniques. Computers and Electronics in Agriculture, v. 75, n. 2, p. 223-230, 2011.

MORAL, F. J.; TERRÓN, J. M.; SILVA, J. R. M. da. Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. Soil and Tillage Research, v. 106, n. 2, p. 335-343, 2010.

MORARI, F.; CASTRIGNANO, A.; PAGLIARIN, C. Application of multivariate geostatistics in delineating management zones within a gravelly vineyard using geoelectrical sensors. Computers and Eletronics in Agriculture, v. 68, n. 1, p. 97-107, 2009.

OLIVER, M. A.; WEBSTER, R. A tutorial guide to geostatistics: computing and modelling variograms and kriging. Catena, v. 113, p. 56-69, 2014.

PERALTA, N. R. et al. Delineation of management zones to improve nitrogen management of wheat. Computers and Electronics in Agriculture, v. 110, p. 103-113, Jan. 2015.

PEREIRA, F. C. B. L. et al. Autumn maize intercropped with tropical forages: crop residues, nutrient cycling, subsequent soybean and soil quality. Revista Brasileira de Ciência do Solo, v. 40, May 2016.

QUEIROZ, D. M. de; DIAS, G. P.; MANTOVANI, E. C. Agricultura de precisão na produção de grãos. In: BORÉM, A. B. et al. Agricultura de precisão. Viçosa, MG: UFV, p. 1-42, 2000.

R CORE TEAM. R: a language and environment for statistical computing. Viena: R Foundation for Statistical Computing, 2016.

RIBEIRO JUNIOR, P. J., DIGGLE, P. J. geoR: Analysis of Geostatistical Data. R package version 1.7-5.2. Disponível em: https://CRAN.R-project.org/package=geoR. Acesso em: 22 jul. 2015.

RICARDO, S. et al. Redundant variables and the quality of management zones. Engenharia Agrícola, v. 36, n. 1, p. 78-93, 2016.

RODRIGUES JUNIOR, F. A. et al. Geração de zonas de manejo para cafeicultura empregando-se sensor SPAD e análise foliar. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 15, n. 8, p. 778-787, 2011.

Safanelli, J. L.; Boesing, B. F. B.; Bottega, E. L. Estabelecimento de zonas de manejo a partir da resposta espectral do solo relacionada ao teor de matéria orgânica. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 17., 2015, João Pessoa. Anais [...]. Recife: INPE, 2015.

SILVA JUNIOR, J. F. da et al. Simulação geoestatística na caracterização espacial de óxidos de ferro em diferentes pedoformas. Revista Brasileira de Ciência do Solo, p. 1690-1703, 2012.

SONG, X. et al. The delineation of agricultural management zones with high resolution remotely sensed data. Precision Agriculture, v. 10, p. 471-487, 2009.

TRIPATHI, R. et al. Delineation of soil management zones for a rice cultivated area in eastern India using fuzzy clustering. Catena, v. 133, p. 128-136, Oct. 2015.

UNITED STATES DEPARTMENT OF AGRICULTURE. World Agricultural Supply and Demand Estimates. World Agricultural Outlook Board. 2018. (Wasde, 577).

VALENTE, D. S. M. et al. The relationship between apparent soil electrical conductivity and soil properties. Revista Ciência Agronômica, v. 43, n. 4, p. 683-690, 2012.

VALIPOUR, M. A comparison between horizontal and vertical drainage systems (include pipe drainage, open ditch drainage, and pumped wells) in anisotropic soils. IOSR Journal of Mechanical and Civil Engineering, v. 4, n. 1, p. 7-12, 2012.

VIERO, D. P.; VALIPOUR, M. Modeling anisotropy in free-surface overland and shallow inundation flows. Advances in Water Resources, v. 104, p. 1-14, 2017.

ZHANG, X. et al. An improved method of delineating rectangular management zones using a semivariogram-based technique. Computers and Electronics in Agriculture, v. 121, p. 74-83, 2016.

ZIMBACK, C. R. L. Análise espacial de atributos químicos de solos para fins de mapeamento da fertilidade do solo. 2001. 114 f. Tese (Livre-Docência) - Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu, 2001.

Zimmerman, D. Another look at anisotropy in geostatistics. Mathematical Geology, v. 25, n. 4, p. 453-470, 1993.




Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site: www.ccarevista.ufc.br, e-mail: ccarev@ufc.br - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.