Adaptation and application of the erosion potential method for tropical soils

Natanael Rodolfo Ribeiro Sakuno, Augusto Cesar Ferreira Guiçardi, Velibor Spalevic, Junior Cesar Avanzi, Marx Leandro Naves Silva, Ronaldo Luiz Mincato

Resumo


The water erosion process has a considerable negative effect on tropical soils, causes soil losses from arable land and reduces the capacity to support surrounding ecosystems. Estimating soil losses caused by water erosion is fundamental for evaluating the impacts of various production systems. Therefore, improving soil loss estimates via the adaptation of models for different edaphoclimatic environments is necessary for estimating local geographic and climatic differences. This study aimed to adapt, apply and evaluate the potentialities of the Potential Erosion Method for Latosols of the Hydrographic Subbasin of Caçús Stream, southern Minas Gerais State. Geological, topographic, pedological, climatic and land use and occupation data were processed via Geographic Information Systems and compared with those obtained by the Revised Universal Soil Loss Equation. The erosion intensity coefficient, Z, was 0.28, indicating weak erosion intensity, and the estimated average soil losses were 31 Mg ha-1 year-1 by the Potential Erosion Method and 36 Mg ha-1 year-1 by the Revised Universal Soil Loss Equation, which were both above the soil loss tolerance. The model results and comparisons indicated that the Potential Erosion Method has excellent performance and can be applied to estimate sediment production via water erosion in tropical soils.

Palavras-chave


Modeling of water erosion; RUSLE; Tropical soils

Texto completo:

PDF

Referências


AMORIM, R. S. S. et al. Avaliação do desempenho dos modelos de predição da erosão hídrica USLE, RUSLE e WEPP para diferentes condições edafoclimáticas do Brasil. Engenharia Agrícola, v. 30, n. 6, p. 1046-1049, 2010.

BAHADUR, K. C. K. Mapping soil erosion susceptibility using remote sensing and GIS: a case of the Upper Name Wa Watershed. Environmental Geology, v. 55, n. 1, p. 695-705, 2009.

BARRETTO, A. G. O. P.; BARROS, M. G. E.; SPAROVEK, G. Bibliometria, história e geografia da pesquisa brasileira em erosão acelerada do Solo. Revista Brasileira de Ciência do Solo, v. 32, n. 6, p. 2443-2460, 2008.

BERTOL, I.; ALMEIDA, J. A. Tolerância de perda de solo por erosão para os principais solos do Estado de Santa Catarina. Revista Brasileira de Ciência do Solo, v. 24, n. 3, p. 657-668, 2000.

DECHEN, S. C. F. et al. Perdas e custos associados à erosão hídrica em função de taxas de cobertura do solo. Bragantia, v. 74, n. 2, p. 224-233, 2015.

DRAGIČEVIĆ, N.; KARLEUŠA, B.; OŽANIĆ, N. A review of the Gavrilović method (Erosion Potential Method) application. Građevinar, v. 9, n. 68, p. 715-725, 2016.

DRAGIČEVIĆ, N.; KARLEUŠA, B.; OŽANIĆ, N. Erosion Potential Method (Gavrilović method) sensitivity analysis. Soil and Water Research, v. 12, n. 1, p. 51-59, 2017.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Centro Nacional de Pesquisa de Solos. Sistema brasileiro de classificação de solos. 2. ed. Rio de Janeiro: Embrapa Solos, 2006.

FANETTI, D.; VEZZOLI, L. Sediment input and evolution of lacustrine deltas: the Breggia and Greggio rivers case study (lake Como, Italy). Quaternary International, v. 173/174, p. 113-124, 2007.

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS. Intergovernmental Technical Panel on Soils. Status of world’s soil resources. FAO-ITPS-GSP Main Report, p. 125-127, 2015.

GAVRILOVIC, Z. Use of an empirical method (Erosion Potential Method) for calculating sediment production and transportation in unstudied or torrential streams. In: INTERNATIONAL CONFERENCE ON RIVER REGIME HYDRAULICS RESEARCH LIMITED, p. 411-422, 1988.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Carta topográfica do município de Alfenas (FOLHA SF 23-1-1-3). Escala 1:50000. Rio de Janeiro: IBGE, 1970.

KOUHPEIMA, A.; HASHEMI, S. A. A.; FEIZN, S. A study on the efficiency of Erosion Potential Model (EPM) using reservoir sediments. Elixir International Journal, n. 38, p. 4135-4139, 2011.

LIMA, C. A. et al. Práticas agrícolas no cultivo da mandioca e suas relações com o escoamento superficial, perdas de solo e água. Revista Ciência Agronômica, v. 46, n. 4, p. 697-706, 2015.

MCBRATNEY, A. B.; MENDONÇA SANTOS, M. L.; MINASNY, B. On digital soil mapping. Geoderma, v. 117, n. 1, p. 3-52, 2003.

MILANESI, L.; PILOTTI, M.; CLERICI, A. The application of the Erosion Potential Method to Alpine areas: methodological improvements and test case. In: Lollino, G. et al. (ed.). Engineering geology for society and territory: river basins, reservoir sedimentation and water resources. 2014. v. 3. p. 347-350.

NIKOLIC, G. et al. Variability of soil erosion intensity due to vegetation cover changes: case study of Orahovacka Rijeka, Montenegro. Notulae Botanicae Horti Agrobotanici, v. 47, n. 1, p. 237-248, 2018.

NYSSEN, J. et al. Twentieth century land resilience in Montenegro and consequent hydrological response. Land Degradation and Development, v. 35, n. 4, p. 336-349, 2014.

OLIVETTI, D. et al. Spatial and temporal modeling of water erosion in dystrophic red latosol (Oxisol) used for farming and cattle raising activities in a subbasin in the South of Minas Gerais. Ciência e Agrotecnologia, v. 39, n. 1, p. 58-67, 2015.

RENARD, K. G. et al. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). U.S. Department of Agriculture. Agriculture Handbook, v. 703, 1997.

RESENDE, M. et al. Da rocha ao solo: enfoque ambiental. Lavras: UFLA, 2019. 513 p.

SANTOS, J. C. N. et al. Sediment delivery ratio in a small semi-arid watershed under conditions of low connectivity. Revista Ciência Agronômica, v. 48, n. 1, p. 49-58, 2017.

SILVA, R. M.; CELSO, A. G. S.; SILVA, A. M. Predicting soil erosion and sediment yield in the Tapacurá Catchment, Brazil. Journal of Urban and Environmental Engineering, v. 8, n. 1, p. 75-82, 2014.

SPALEVIC, V. et al. Prediction of the soil erosion intensity from the river basin Navotinski, Polimlje (northeast Montenegro). Agriculture and Forestry, v. 59, n. 2, p. 9-20, 2013.

SPAROVEK, G.; VAN LIER, Q. J.; DOURADO NETO, D. Computer assisted Köppen climate classification: a case study for Brazil. International Journal of Climatology, v. 27, p. 257-266, 2007.

TAVARES, A. S. et al. Modelos de erosão hídrica e tolerância das perdas de solo em Latossolos distróficos no sul de Minas Gerais. Revista do Departamento de Geografia, p. 268-277, 2017. Volume especial – Eixo 12.

UNIVERSIDADE FEDERAL DE VIÇOSA et al. Mapa de solos do Estado de Minas Gerais. Escala 1:650:000. Belo Horizonte: Fundação Estadual do Meio Ambiente, 2010. 49 p.

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO; COMPANHIA DE PESQUISA DE RECURSOS MINERAIS (BRASIL). Mapa Geológico da Folha Alfenas (SF-23-V-D-II). Escala 1:100.000. Rio de Janeiro, 2010.

VUJACIC, D. et al. Calculation of runoff and sediment yield in the Pisevska Rijeka watershed, Polimlje, Montenegro. Agriculture e Forestry, v. 61, n. 2, p. 225-234, 2015.

YOUSEFI, S. et al. An estimation of sediment by using erosion potential method and geographic information systems in Chamgardalan watershed: a case study of Ilam province, Iran. Geodynamics Research International Bulletin - GRIB, v. 2, n. 2, p. 1-5, 2014.




Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site: www.ccarevista.ufc.br, e-mail: ccarev@ufc.br - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.