Trichoderma in the promotion of growth and nutrition of dwarf cashew rootstock

João Marcos Rodrigues dos Santos, Carlos Alberto Kenji Taniguchi, Christiana de Fátima Bruce da Silva, William Natale, Adriana Guirado Artur


Inoculation of microorganisms in plants performs important functions related to plant growth and nutrition. The responses are based on hormonal stimulation and improved absorption and efficiency in the use of nutrients. Thus, the objective of this study was to evaluate the ability of Trichoderma strains (T. longibrachiatum and T. asperellum) to promote growth and improve the nutrition in dwarf cashew rootstock. The experiment was conducted in a shade net house with 50% of shading located in the Experimental Field of Pacajus, belonging to Embrapa Agroindústria Tropical, in Pacajus/CE, Brazil. The experimental design used was completely randomized, with three treatments and ten replicates. Each experimental unit consisted of a tube with a 288 cm3 capacity containing one seedling of dwarf cashew. At sixty days (60) after germination, the plants were evaluated for biometric parameters, Dickson’s quality index, and nutritional diagnosis of leaves. To verify the growth-promoting mechanisms, the strains were reisolated by indirect plating of roots. Nutrient accumulation in the leaves was not influenced by the application of the isolates; however, the seedlings were adequately supplied. The strains showed similarities in relation to growth-promotion mechanisms. The Trichoderma longibrachiatum strain promoted an increase in the growth, so its use as a supplement for the planting substrate is recommended.


Anacardium occidentale. 3-Indoleacetic Acid. Biostimulant. Siderophores. Solubilization of phosphates.

Texto completo:

PDF (English)


ALFENAS, A. C.; MAFIA, R. G. Métodos em Fitopatologia. 2. ed. Viçosa: Universidade Federal de Viçosa, 2016, 516p.

ANAM, G. B.; REDDY, M. S.; AHN, Y. H. Characterization of Trichoderma asperellum RM-28 for its sodic/saline-alkali tolerance and plant growth promoting activities to alleviate toxicity of red mud. Science of the Total Environment, v. 662, p. 462-469, 2019.

ASSOCIAÇÃO BRASILEIRA DE PRODUTORES EXPORTADORES DE FRUTAS E DERIVADOS. Exportação de frutas cresce 16% em 2019. Disponível em: . Acesso em: 30 mar 2020.

BEHERA, B. C. et al. Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove - A review. Biocatalysis and Agricultural Biotechnology, v. 3, n. 2, p. 97-110, 2014.

BRAINER, M. S. C. P.; VIDAL, M. F. Cajucultura nordestina em recuperação. Caderno Setorial ETENE, n. 54, p. 1-13, 2018.

CHAGAS JUNIOR, A. F. et al. Efficiency of Trichoderma asperellum UFT 201 as plant growth promoter in soybean. African Journal of Agricultural Research, v. 31, n. 5, p. 263-271, 2019.

DONADIO, L. C. et al. Dwarfing-canopy and rootstock cultivars for fruit trees. Revista Brasileira de Fruticultura, v. 41, n. 3, p. 1-12, 2019.

FRANÇA, D. V. C. et al. Trichoderma spp. isolates with potential of phosphate solubilization and growth promotion in cherry tomato. Pesquisa Agropecuária Tropical, v. 47, n. 4, p. 360-368, 2017.

GORDON, S. A.; WEBER, R. P. Colorimetric estimation of indole acetic acid. Plant Physiology, v. 26, n. 4, p. 192-195, 1951.

HARMAN, G. E. et al. Trichoderma species-opportunistic, avirulent plant symbionts. Nature Review Microbiology, v. 2, n. 1, p. 43-56, 2004.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Levantamento sistemático da produção agrícola: Tabela 1 - Área, produção e rendimento médio - Confronto das estimativas Janeiro/Fevereiro - Brasil. Maio, 2020. Disponível em: . Acesso em: 17 set 2020.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Produção agrícola municipal: culturas temporárias e permanentes. Rio de Janeiro, v. 36, p.1-93, 2009.

KOTASTHANE, A. et al. In-vitro antagonism of Trichoderma spp. against Sclerotium rolfsii and Rhizoctonia solani and their response towards growth of cucumber, bottle gourd and bitter gourd. European Journal of Plant Pathology, v. 141, n. 1, p. 523-543, 2015.

LI, M. et al. Effects of microbial bioeffectors and P amendements on P forms in a maize cropped soil as evaluated by 31P–NMR spectroscopy. Plant and Soil, v. 427, n. 1, p. 87-104, 2018.

LI, Y. T. et al. Effects of Trichoderma asperellum on nutrient uptake and Fusarium wilt of tomato. Crop Protection, v. 110, p. 275-282, 2018.

LÓPEZ, A. C. et al. Trichoderma spp. from Misiones, Argentina: effective fungi to promote plant growth of the regional crop Ilex paraguariensis St. Hil. Mycology, v. 10, n. 4, p. 210-221, 2019.

MIYAZAWA, M. et al. Análise química de tecido vegetal. In: SILVA, F. C. Manual de análises químicas de solos, plantas e fertilizantes. 2. ed. Brasília: Embrapa Informação Tecnológica, 2009. cap. 2, p. 191-233.

MUKHERJEE, P. K. et al. Ferricrocin, the intracellular siderophore of Trichoderma virens, is involved in growth, conidiation, gliotoxin biosynthesis and induction of systemic resistance in maize. Biochemical and Biophysical Research Communications, v. 505, n. 2, p. 605-611, 2018.

MURPHY, J.; RILEY, J. P. A modified single solution method for determination of phosphate in natural waters. Analytical Chemistry Acta, v. 27, p. 31-36, 1962.

NIETO-JACOBO, M. F. et al. Environmental growth conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Frontiers in Plant Science, v. 8, n. 102, p. 1-18, 2017.

OLIVEIRA, A. G. et al. Potencial de solubilização de fosfato e produção de AIA por Trichoderma spp. Revista Verde de Agroecologia e Desenvolvimento Sustentável, v. 7, n. 3, p. 149-155, 2012.

ORTUÑO, N. et al. The use of secondary metabolites extracted from Trichoderma for plant growth promotion in the andean highlands. Renewable Agriculture and Food Systems, v. 32, n. 4, p. 366-375, 2016.

SANTOS, C. H. B. et al. Promoting fruit seedling growth by encapsulated microorganisms. Revista Brasileira de Fruticultura, v. 40, n. 3, p. e-179, 2018.

SARAVANAKUMAR, K.; ARASU, V.; KATHIERESAN, K. Effect of Trichoderma on soil phosphate solubilization and growth improvement of Avicennia marina. Aquatic Botany, v. 104, p. 101-105, 2013.

SCHWYN, B.; NEILANDS, J, B. Universal chemical assay for the detection and determination of siderophore. Analytical Biochemistry, v. 160, n. 1, p. 47-56, 1987.

SERRANO, L. A. L. et al. Porta enxertos para a produção de mudas de cajueiro. Pesquisa Agropecuária Brasileira, v. 48, n. 9, p. 1237-1245, 2013.

SERRANO, L. A. L.; CAVALCANTI JUNIOR, A. T. Produção de mudas de cajueiro. In: Serrano, L. A. L. Sistema de Produção do Caju. 2. ed. Fortaleza: Embrapa Agroindústria Tropical, 2016. cap. 5, p. 43-54.

SHORESH, M.; HARMAN, G. E.; MASTOURI, F. Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, v. 48, p. 21-43, 2010.

SILVA, E. M. et al. Produção de mudas de cajueiro anão-precoce em substratos de resíduos orgânico. Revista Brasileira de Agropecuária Sustentável, v. 9, n.1, p. 90-96, 2019.

SOFO, A. et al. Trichoderma harzianum strain T-22 induces changes in phytohormone levels in cherry rootstocks (Prunus cerasus X P. canescens). Plant Growth Regulation, v. 65, n. 2, p. 421-425, 2011.

TAIZ, L. et al. Fisiologia e desenvolvimento vegetal. 6. ed. Porto Alegre : Artmed, 2017. 888p.

TANDON, A. et al. Effect of Trichoderma koningiopsis on chickpea rhizosphere activities under different fertilization regimes. Open Journal of Soil Science, v. 8, n. 7, p. 261-275, 2018.

WOO, S. L. et al. Trichoderma - based products and their widespread use in agriculture. The Open Mycology Journal, v. 8, p. 71-85, 2014.

ZHAO, L. et al. Involvement of Trichoderma asperellum strain T6 in regulating iron acquisition in plant. Journal of Basic Microbiology, v. 54, p. S115-S124, 2014.

Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site:, e-mail: - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.