Produtividade primária líquida da soja utilizando diferentes fontes de dados e métodos de estimativa

Grazieli Rodigheri, Denise Cybis Fontana, Genei Antonio Dalmago, Laura Pigatto Schaparini, Juliano Schirmbeck, José Mauricio Cunha Fernandes

Resumo


A Produtividade Primária Líquida (NPP) pode ser utilizada para quantificar o papel relativo do clima e das atividades humanas na dinâmica da vegetação. Dada sua importância, muitos modelos de estimativa de NPP foram desenvolvidos, mas parte dos dados requeridos, ainda são limitados. Diante disso, este trabalho teve como objetivo estimar a NPP potencial e real testando diferentes abordagens quanto a fonte dos dados e métodos de estimativa, assim como, avaliar a apropriação humana da NPP em uma lavoura de soja cultivada no Sul do Brasil. Para isso, foram obtidos dados de NPP medida a campo em cultivo de soja em Carazinho, no Rio Grande do Sul, e comparados às estimativas de NPP potencial e NPP real, utilizando o modelo CASA e dados do ERA-Interim. Posteriormente, com a NPP potencial e real foram avaliadas as mudanças causadas pelo uso da terra em função das atividades agrícolas, através da Apropriação Humana da NPP (HANPP).  Verificou-se que não houve diferença significativa associadas às fontes de dados utilizadas, evidenciando que os dados meteorológicos de reanálise do ERA-Interim podem ser utilizados para esse fim. As estimativas da NPP real pelo modelo CASA foram consistentes com elevada associação aos dados medidos a campo. A HANPP por meio de apenas um cultivo anual de soja, representou 29% do potencial de NPP na região. Isso indica que há potencial para elevar a intensificação com cultivos anuais na região.

Palavras-chave


Manejo e Conservação de Água e Solo

Texto completo:

PDF (English)

Referências


ALLEN, R. G. et al. Crop evapotranspiration: guidelines for computing crop water requirements. Rome: FAO, 1998. 300 p. (FAO – Irrigation and Drainage Paper, 56).

BAEZA, S.; PARUELO, J. M. Spatial and temporal variation of human appropriation of net primary production in the Rio de la Plata grasslands. ISPRS Journal of Photogrammetry and Remote Sensing, v. 145, p. 238-249, 2018.

BAO, G. et al. Modeling net primary productivity of terrestrial ecosystems in the semi-arid climate of the Mongolian Plateau using LSWI-based CASA ecosystem model. International Journal of Applied Earth Observation and Geoinformation, v. 46, p. 84-93, 2016.

BATTISTI, R.; BENDER, F. D.; SENTELHAS, P. C. Assessment of different gridded weather data for soybean yield simulations in Brazil. Theoretical and Applied Climatology, v. 135, n. 1/2, p. 237-247, 2019.

CHARTIER, M. et al. Utilization des cellules au silicium amorphe pour la mesure du rayonnement photosynthíquement actif (400-700 nm). Agronomie, v. 9, p. 281-284, 1989.

CHEN, B. et al. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agricultural and Forest Meteorology, v. 189-190, p. 11-18, 2014.

CHEN, T. et al. Disentangling the relative impacts of climate change and human activities on arid and semiarid grasslands in Central Asia during 1982–2015. Science of the Total Environment, v. 653, p. 1311-1325, 2019.

CIVEIRA, G. Potential Changes in Net Primary Productivity and carbon input of periurban agroecosystems treated with biosolids in Buenos Aires, Argentina. Pedosphere, v. 26, n. 1, p. 98–107, 2016.

CUNHA, G. R. et al. Zoneamento agrícola e época de semeadura para soja no Rio Grande do Sul. Revista Brasileira de Agrometeorologia, v. 9, n. 3, p. 446-459, 2001.

DALMAGO, G. A. et al. Use of solar radiation in the improvement of spring canola (Brassica napus L., Brassicaceae) yield influenced by nitrogen topdressing fertilization. Agrometeoros, v.26, n.1, p.223-237, 2018.

DEE, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, v. 137, p. 553-597, 2011.

DEFRIES, R. S.; FOLEY, J. A.; ASNER, G. P. Land-use choices: balancing human needs and ecosystem function. Frontiers in Ecology and the Environment, v. 2, n. 5, p. 249-257, 2004.

DE SOUZA, P.; MALHI, Y. Land use change in India (1700-2000) as examined through the lens of human appropriation of net primary productivity. Journal of Industrial Ecology, v. 22, n. 5, p. 1202-1212, ago. 2017.

ERB, K. et al. Analyzing the global human appropriation of net primary production — processes, trajectories, implications. An introduction. Ecological Economics, v. 69, n. 2, p. 250-259, 2009.

FAO. The future of food and agriculture – Trends and challenges. Rome: FAO, 2017.

FENG, Y. et al. Identifying the relative contributions of climate and grazing to both direction and magnitude of alpine grassland productivity dynamics from 1993 to 2011 on the northern tibetan plateau. Remote Sensing, v. 9, n. 2, 2017.

GAO, Y. et al. Vegetation net primary productivity and its response to climate change during 2001–2008 in the Tibetan Plateau. The Science of the Total Environment, v. 444, p. 356-362, 2013.

GESSNER, U. et al. The relationship between precipitation anomalies and satellite-derived vegetation activity in Central Asia. Global and Planetary Change, v. 110, p. 74-87, 2013.

HABERL, H. et al. Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems. Proceedings of the National Academy of Sciences, v. 104, p. 12942–12947, 2007.

HABERL, H.; ERB, K. H.; KRAUSMANN, F. Human appropriation of net primary production: patterns, trends, and planetary boundaries. Annual Review of Environment and Resources, v. 39, p. 363-391, 2014.

KRAUSMANN, F. et al. Global human appropriation of net primary production doubled in the 20th century. Proceedings of The National Academy of Sciences, v. 110, n. 25, p. 10324-10329, 2013.

KÖPPEN, W. Das geographische system der klimate. In: KÖPPEN, W.; GEIGER, R. (ed.). Handbuch der klimatologie. Berlin: GebrüderBornträger, 1936. p. 1-44. KUBIK, M.L. et al. Exploring the role of reanalysis data in simulating regional wind generation variability over Northern Ireland. Renewable Energy, v. 57, p. 558-561, 2013.

LEES, K. J. et al. Potential for using remote sensing to estimate carbon fluxes across northern peatlands – a review. The Science of the Total Environment, v. 615, p. 857-874, 2018.

LI, Z. et al. Potential impacts of climate change on vegetation dynamics in Central Asia. Journal of Geophysical Research: Atmospheres, v. 120, n. 24, p. 12345-12356, 2015.

LI, Q. et al. Quantitative assessment of the relative roles of climate change and human activities in desertification processes on the Qinghai-Tibet Plateau based on net primary productivity. Catena, v. 147, p. 789-796, 2016.

LI, L. et al. Current challenges in distinguishing climatic and anthropogenic contributions to alpine grassland variation on the Tibetan Plateau. Ecology and Evolution, v. 8, n. 11, p. 5949-5963, 2018.

LIANG, W. et al. Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010. Agricultural and Forest Meteorology, v. 204, p. 22-36, 2015.

LIETH, H. Modeling the primary productivity of the world. In: LIETH, H.; WHITTAKER, R. H. Primary productivity of the biosphere. New York: Springer, 1975. cap. 12, p. 237-263.

LIU, Y. et al. Grassland dynamics in responses to climate variation and human activities in China from 2000 to 2013. Science of the total Environment, v. 690, p. 27-39, 2019.

LOREL, C. et al. Linking the human appropriation of net primary productivity-based indicators, input cost and high nature value to the dimensions of land-use intensity across French agricultural landscapes. Agriculture, Ecosystems & Environment, v. 283, p. 106565-106565, 2019.

MONTEITH, J. Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, v. 9, n. 3, p. 747–766, 1972.

PEI, F. et al. Assessing the impacts of droughts on net primary productivity in China. Journal of Environmental Management, v. 114, p. 362-371, 2013.

PIANA, M.; CIVEIRA, G. Estimating net primary productivity and carbon inputs by soybean crops in Argentina. Communications in Soil Science and Plant Analysis, v. 48, n. 10, p. 1105-1113, 2017.

PIAO, S. et al. Impacts of climate and CO2 changes on the vegetation growth and carbon balance of Qinghai–Tibetan grasslands over the past five decades. Global and Planetary Change, v. 98-99, p. 73-80, 2012.

PILLON, C. N.; MIELNICZUK J.; MARTIN NETO, L. Ciclagem da matéria orgânica em sistemas agrícolas. Pelotas: Embrapa Clima Temperado, 2004. (Documentos, 125).

POTTER, C. S. et al. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochemical Cycles, v. 7, n. 4, p. 811-841, 1993.

ROUSE, J. W. et al. Monitoring vegetation systems in the great plains with ERTS. In: EARTH RESOURCES TECHNOLOGY SATELLITE SYMPOSIUM, 3., 1973, Washington. Proceedings. Washington, DC: NASA, 1973. p. 309-317.

RUNNING, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience, Washington, DC, v. 54, n. 6, p. 547-560, 2004.

SOARES, M. B. et al. Integrated production systems: an alternative to soil chemical quality restoration in the Cerrado-Amazon ecotone. Catena, v. 185, 2020.

TAELMAN, S. E. et al. Accounting for land use in life cycle assessment: the value of NPP as a proxy indicator to assess land use impacts on ecosystems. The Science of the Total Environment, v. 550, p. 143-156, 2016.

THORNTHWAITE, C. W.; MATHER, J. R. The water balance. Centerton, NJ: Drexel Institute of Technology - Laboratory of Climatology, 1955. 104 p. (Publications in Climatology, v. 8, n.1).

UGBAJE, S. U. et al. Assessing the spatio-temporal variability of vegetation productivity in Africa: quantifying the relative roles of climate variability and human activities. International Journal of Digital Earth, Abingdon, v. 10, n. 9, p. 879-900, 2016.

WEINZETTEL, J.; VAČKÁŘŎ, D.; MEDKOVÁ, H. Potential net primary production footprint of agriculture: a global trade analysis. Journal of Industrial Ecology, Cambridge, v. 23, n. 5, p. 1133-1142, 2019.

YAN, Y. et al. Assessing the contributions of climate change and human activities to cropland productivity by means of remote sensing. International Journal of Remote Sensing, 2019.

YIN, L. et al. What drives the vegetation dynamics in the Hengduan Mountain region, southwest China: climate change or human activity?. Ecological Indicators, v. 112, 2020.

YU, D. Y. et al. Forest ecosystem restoration due to a national conservation plan in China. Ecological Engineering, Amsterdam, v. 37, n. 9, p. 1387-1397, 2011.

ZHANG, X. et al. Spatial-temporal changes in NPP and its relationship with climate factors based on sensitivity analysis in the Shiyang River Basin. Journal of Earth System Science, Bangalore, v. 129, n. 1, p. 1-13, 2020.

ZHOU, W. et al. Grassland degradation remote sensing monitoring and driving factors quantitative assessment in China from 1982 to 2010. Ecological Indicators, New York, v. 83, p. 303-313, 2017.

ZHU, Q. et al. Remotely sensed estimation of Net Primary Productivity (NPP) and Its spatial and temporal variations in the Greater Khingan Mountain Region, China. Sustainability, Basel, v. 9, n. 7, p. 1213-1229, 2017.




Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site: www.ccarevista.ufc.br, e-mail: ccarev@ufc.br - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.