The effect of chitosan in preventing the adverse effects of aging on the germination and seedling development of corn plant

Gülay Zulkadir

Resumo


In this study, in which the effect of chitosan coating on the aging process of a seed was investigated, the rapid aging times applied did not have a negative effect on the Gmax value of the seeds. Therefore, the effect of chitosan and aging treatments on seed germination and germination time at this stage could not be observed. In the examinations for seedling development, the values obtained on the 14th, 30th and 60th days were determined to be between 9.558-13.910 cm, 12.868-21.410 cm and 34.458- 66.243 cm for root length; 1.55-2.49 cm, 3.198-4.770 cm and 11,843-18,442 cm for seedling length; 0.173-0.280 g, 0.690-1.570 g and 2.508-5.903 g for fresh root weight; 0.170-0.240 g, 0.653-1.608 g and 3.413-16.273 g for fresh shoot weight; 0.018-0.030 g, 0.090-0.170 g and 0.248-0.553 g for dry root weight; 0.018-0.020 g, 0.083-0.188 g and 0.338-1.543 g for dry shoot weight; 0.150-0.250%, 0.600-1.418% and 2.163-5.358% for root moisture content; 0.150-0.220%, 0.570-1.420% and 3.075-14.728% for shoot moisture content, respectively. EC values were determined as 0.640-0.930 µS cm-1g-1 on the 30th day and 0.230-0.641 µS cm-1g-1 on the 60th day. Considering the general effects of the applications, the best results were obtained in A2B2 applications in the 14-day period, A1B1 in the 30-day period and A2B2 in the 60-day period. According to these results, it was observed that chitosan periodically increased the seedling growth in the maize plant. More research is needed on the effects of chitosan applications on germination and seedling growth.

Palavras-chave


Zea mays. Bio-stimulant. Storage life. Stamina. Seedling vigor

Texto completo:

PDF (English)

Referências


ABIRAMI, S.; NAGARAJAN, D.; ANTONY, V. S.; MINI VARSINI, A.; SUGASINI, A.; ANAND, D. A. Extraction, characterization, and utilization of shrimp waste chitin derived chitosan in antimicrobial activity, seed germination, preservative, and microparticle formulation. Biointerface Research in Applied Chemistry, v. 11, n. 2, p. 8725 – 8739, 2021. https://doi.org/10.33263/BRIAC112.87258739

ADILETTA, G.; PASQUARIELLO, M.S.; ZAMPELLA, L.; MASTROBUONI, F.; SCORTICHINI, M.; PETRICCIONE, M. Chitosan coating: A postharvest treatment to delay oxidative stress in loquat fruits during cold storage. Agronomy, v. 8, n. 4, p. 54, 2018. https://doi.org/10.3390/agronomy8040054

AL-GAZALI, L.; BENER, A.; ABDULRAZZAQ, Y.; MICALLEF, R.; AL-KHAYAT, A.; GABER, T. Consanguineous Marriages In The United Arab Emirates. Journal of Biosocial Science, v. 29, n. 4, p. 491-497, 1997.

ALI, Q.; ASHRAF, M. Induction of drought tolerance in maize (Zea mays L.) due to exogenous application of trehalose: growth, photosynthesis, water relations and oxidative defense mechanism. Journal of Agronomy and Crop Science, v. 197, p. 258– 271, 2011. https://doi.org/10.1111/j.1439-037X.2010.00463.x

AMINE, R.; ABLA, E. H.; MOHAMMED, B. I.; KHADIJA, O. The amendment with chitin and/or chitosan ımproves the germination and growth of Lycopersicon esculentum L., Capsicum annuum L. and Solanum melongena L. Indian Journal of Agricultural Research, v. 54, n. 4, p. 420-428, 2020. https://doi.org/10.18805/IJARe.A-452

AOSA. Association of Official Seed Analysts: Seed Vigor Testing Handbook. (Contribution to the Handbook on Seed Testing, 32). – AOSA, Ithaca, NY, 1983.

AOSA. Association of Official Seed Analysts: Seed Vigor Testing Handbook. (Contribution, 32) – AOSA, Ithaca, NY, 2002.

BEHBOUD, R.; MORADI, A.; FARAJEE, H. Effect of different chitosan concentrations on seed germination and some biochemical traits of sweet corn (Zea mays var. Saccharata) seedling under osmotic stress conditions. Iranian Journal of Seed Research, v. 7, n. 1, p. 1-22, 2020. https://doi.org/10.29252/yujs.7.1.1

BUSH, D.S. Calcium regulation in plant cells and its role in signaling. Annual Review of Plant Physiology and Plant Molecular Biology, v. 46, p. 95-122, 1995.

CHOU, C. H.; LIN, H. J. Autointoxication mechanism of Oryza sativa I. Phytotoxic effects of decomposing rice residues in soil. Journal of Chemical Ecology, v. 2, n. 3, p. 353-367, 1976.

CHOUDHARY, R. C.; KUMARASWAMY, R. V.; KUMARI, S.; SHARMA, S. S.; PAL, A.; RALIYA, R.; BISWAS, P.; SAHARAN, V. Zinc encapsulated chitosan nanoparticle to promote maize crop yield. International Journal of Biological Macromolecules, v. 127, p. 126-135, 2019. https://doi.org/10.1016/j.ijbiomac.2018.12.274

RUIZ-DE-LA-CRUZ, G.; AGUIRRE-MANCILLA, C. L.; GODINEZ-GARRIDO, N. A.; OSORNIO-FLORES, N. M.; TORRES-CASTILLO, J. A. Chitosan mixed with beneficial fungal conidia or fungicide for bean (Phaseolus vulgaris L.) seed coating. Interciencia, v. 42, n. 5, p. 307-312, 2017.

Desheva, G.; Petrova, S.; Deshev, M. Germinability of soybean seeds stored more than 30 years in the Bulgarian national seed genebank. World Scientific News, v. 69, p. 29-46, 2017.

DUTRA, A. S.; TEOFILO, E.M. Envelhecimento acelerado para avaliar o vigor de sementes de feijão caupi. Revista Brasileira de Sementes, v.29, n.1, p.193-197, 2007. https://doi.org/10.1590/S0101-31222007000100027

DUTRA, A.S.; MEDEIROS-FILHO, S.; TEOFILO, E.M. Condutividade eletrica em sementes de feijão caupi. Revista Ciência Agronômica, v.37, n.2, p.166-170, 2006. http://ccarevista.ufc.br/seer/index.php/ccarevista/article/view/195/189

EL GHAOUTH, A.; ARUL, J.; GRENIER, J.; ASSELIN, A. Antifungal activity of chitosan on two postharvest pathogens of strawberry fruits. Phytopathology, v. 82, n. 4, p. 398-402, 1992.

EL HADRAMI, A.; ADAM, L.R.; EL HADRAMI, I.;DAAYF, F. Chitosan ın plant protection. Marine Drugs, v. 8, n. 4, p. 968-987, 2010. https://doi.org/10.3390/md8040968

FAROOQ, M.; BASRA, S. M. A.; AHMAD, N.; HAFEEZ, K. Thermal hardening: a new seed vigor enhancement tool in rice. Journal of Integrative Plant Biology, v. 47, n. 2, p. 187-193, 2005. https://doi.org/10.1111/j.1744-7909.2005.00031.x

GU, R.; LI, L.; LIANG, X.; WANG, Y.; FAN, T.; WANG, Y.; WANG, J.; GU, R.; LI, L.; LIANG, X.; WANG, Y.; FAN, T.; WANG, Y. The ideal harvesting time for seeds of hybrid maize (Zea mays L.) XY335 and ZD958 produced in multiple environments. – Scientific Reports, v. 7, p. 17537, 2017. https://doi.org/10.1038/s41598-017-16071-4.

HAMEED, A.; SHEIKH, M.A.; HAMEED, A.; FAROOQ, T.; BASRAQ, S.M.A.; JAMIL, A. Chitosan seed priming improves seed germination and seedling growth in wheat (Triticum aestivum L.) under osmotic stress induced by polyethylene glycol. The Philippine Agricultural Scientist, v. 97, p. 294-299, 2014.

ILIC, Z.S.; FALLIK, E.; MANOJLOVIC, M.; KEVRESAN, Z.; MASTILOVIC, J. Postharvest practices for organically grown products. Contemporary Agriculture, v. 67, n. 1, p. 71-80, 2018. https://doi.org/10.2478/contagri-2018-0011

ISTA. International rules for seed testing bull., Zurich, Switzerland, 188, 2006.

KANAWI, M. A.; AL HAYDAR, M.; RADHI, W. N. Effect of chitin and chitosan in ımprovement of plant growth and anti-fungal activity. Egyptian Journal of Botany, v. 61, n. 2, p. 513-519, 2021. https://doi.org/10.21608/ejbo.2021.41084.1549

KAUR, S.; DHILLON, G.S. The versatile biopolymer chitosan: potential sources, evaluation of extraction methods and applications. Critical Reviews in Microbiology, v. 40, p. 155–175, 2014. https://doi.org/10.3109/1040841X.2013.770385

KAYA, C.; AK, B.E.; HIGGS, D. Response of salt-stressed strawberry plants to supplementary calcium nitrate and/or potassium nitrate. Journal of Plant Nutrition, v. 26, p. 543-560, 2003. https://doi.org/10.1081/PLN-120017664

KHAPTSEV, Z.; LUGOVITSKAYA, T.; SHIPOVSKAYA, A.; SHIPENOK, K. Biological activity of chitosan aspartate and its effect on germination of test seeds. In IOP Conference Series: Earth and Environmental Science, v, 723, n. 2, p. 022074, 2021. https://doi.org/ 10.1088/1755-1315/723/2/022074

MARCOS-FILHO, J. Seed vigor testing: an overview of the past, present and future perspective. Scientia Agricola, v.72, n.4, p.363-374, 2015. https://doi.org/10.1590/0103-9016-2015-0007

MARCOS-FILHO, J. Fisiologia de sementes de plantas cultivadas. FEALQ, Piracicaba, p. 495, 2005.

MARTINEZ-FERNANDEZ, D.; KOMAREK, M. Comparative effects of nanoscale zero-valent iron (nZVI) and Fe2O3 nanoparticles on root hydraulic conductivity of Solanum lycopersicum L. Environmental and Experimental Botany, v. 131, p. 128-136, 2016. https://doi.org/10.1016/j.envexpbot.2016.07.010

MONDO, V. H. V.; CICERO, S. M.; DOURADO-NETO, D.; PUPIM, T. L.; DIAS, M. A. N. Seed vigor and initial growth of corn crop. Journal of Seed Science, v.35, n.1, p.64-69, 2013.

NGUYEN, T. H.; THI, T. V.; NGUYEN, T. T.; LE, T. D.; VO, D. M. H.; NGUYEN, D. H.; NGUYEN, C. K.; NGUYEN, D. C.; NGUYEN, T. T.; BACH, L. G. Investigation of chitosan nanoparticles loaded with protocatechuic acid (pca) for the resistance of pyricularia Oryzae fungus against rice blast. Polymers, v. 11, n. 1, p. 177, 2019. https://doi.org/10.3390/polym11010177

ODAT, N.; TAWAHA, A. M.; HASAN, M.; AL-TAWAHA, A. R.; THANGADURAI, D.; SANGEETHA, J.; RAUF, A.; KHALID, S.; SARANRAJ, P.; AL-TAEY, D.K.A.; SAFARI, Z.S.; ZAHID, N.A.; QAZIZADAH, A.Z.; SIRAJUDDIN, S. N. Seed priming with chitosan alleviates salinity stress by improving germination and early growth parameters in common vetch (Vicia sativa). In IOP Conference Series: Earth and Environmental Science, v. 788, N. 1, p. 012059, 2021. https://doi.org/10.1088/1755-1315/788/1/012059

PANUCCIO, M. R.; JACOBSEN, S. E.; AKHTAR S. S.; MUSCOLO, A. Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB Plants, v. 6, 2014. https://doi.org/10.1093/aobpla/plu047

PARFENOVA, A. M.; LASAREVA, E. V.; AZOVTSEVA, N. A. Nanomagnetite and chitosan affect seed germination and growth of wheat (Triticum aestivum L.). Letters in Applied NanoBioScience, v. 10, n. 2, p. 2279-2288, 2020. https://doi.org/10.33263/LIANBS102.22792288

REYES-PEREZ, J. J.; RIVERO-HERRADA, M.; SOLORZANO-CEDENO, A. E.; CARBALLO-MENDEZ, F. D. J.; LUCERO-VEGA, G.; RUIZ-ESPINOZA, F. H. Application of humic acids, chitosan and mycorrhizal fungus influence pepper growth and development. Terra Latinoamericana, v. 39, 2021. https://doi.org/10.28940/terra.v39i0.833.

SAAVEDRA, G.M.; FIGUEROA, N. E.; POBLETE, L.A.; CHERIAN, S.; FIGUEROA, C.R. Effects of preharvest applications of methyl jasmonate and chitosan on postharvest decay, quality and chemical attributes of fragaria chiloensis fruit. Food Chemistry, v. 190, p. 448-453, 2016. https://doi.org/10.1016/j.foodchem.2015.05.107

SABIR, F.K.; SABIR, A.; UNAL, S.; TAYTAK, M.; KUCUKBASMACI, A.; BILGIN, O.F. Postharvest quality extension of minimally processed table grapes by chitosan coating. International Journal of Fruit Science, v. 19, n. 4, p. 347-358, 2019. https://doi.org/10.1080/15538362.2018.1506961

SHIEKH, R. A.; MALIK, M. A.; AL-THABAITI, S. A.; SHIEKH, M.A. Chitosan as a novel edible coating for fresh fruits. Food Science and Technology Research, v. 19, n. 2, p. 139155, 2013. https://doi.org/10.3136/fstr.19.139

SOUZA, T. C.; MAGALHAES, P. C.; CASTRO, E. M.; ALBUQUERQUE, P. E. P.; MARABESI, M. A. The influence of ABA on water relation, photosynthesis parameters, and chlorophyll fluorescence under drought conditions in two maize hybrids with contrasting drought resistance. Acta Physiologiae Plantarum, v. 35, p. 515–527, 2013. https://doi.org/10.1007/s11738-012-1093-9

TIAN, F.; CHEN, W.; FAN, G.; LI, T.; KOU, X.; WU, C. E.; WU, Z. Effect of ginkgo biloba seed exopleura extract and chitosan coating on the postharvest quality of ginkgo seed. Journal of the Science of Food and Agriculture, v. 99, n. 6, p. 3124-3133, 2019.

TOVAR, G. I.; BRICENO, S.; SUAREZ, J.; FLORES, S.; GONZALEZ, G. (2020). Biogenic synthesis of iron oxide nanoparticles using Moringa oleifera and chitosan and its evaluation on corn germination. Environmental Nanotechnology, Monitoring & Management, v. 14, p. 100350, 2020. https://doi.org/10.1016/j.enmm.2020.100350

WOLTZ, J. M.; TEKRONY, D. M. Accelerated aging test for corn seed. Seed Technology, v. 23, p. 21-34, 2001.

ZAYED, M. M.; ELKAFAFI, S. H.; ZEDAN, A. M.; DAWOUD, S. F. Effect of nano chitosan on growth, physiological and biochemical parameters of Phaseolus vulgaris under salt stress. Journal of Plant Production, v. 8, n. 5, p. 577-585, 2017. https://doi.org/10.21608/JPP.2017.40468

ZHOU, Y.G.; YANG, Y.D.; QI, Y.G.; ZHANG, Z.M.; WANG, X.J.; HU, X.J. Effects of chitosan on some physiological activity in germinating seed of peanut. Journal of Peanut Science, v. 31, p. 22-25, 2002.




Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site: www.ccarevista.ufc.br, e-mail: ccarev@ufc.br - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.