The effect of chitosan in preventing the adverse effects of aging on the germination and seedling development of corn plant
Resumo
Palavras-chave
Texto completo:
PDF (English)Referências
ABIRAMI, S.; NAGARAJAN, D.; ANTONY, V. S.; MINI VARSINI, A.; SUGASINI, A.; ANAND, D. A. Extraction, characterization, and utilization of shrimp waste chitin derived chitosan in antimicrobial activity, seed germination, preservative, and microparticle formulation. Biointerface Research in Applied Chemistry, v. 11, n. 2, p. 8725 – 8739, 2021. https://doi.org/10.33263/BRIAC112.87258739
ADILETTA, G.; PASQUARIELLO, M.S.; ZAMPELLA, L.; MASTROBUONI, F.; SCORTICHINI, M.; PETRICCIONE, M. Chitosan coating: A postharvest treatment to delay oxidative stress in loquat fruits during cold storage. Agronomy, v. 8, n. 4, p. 54, 2018. https://doi.org/10.3390/agronomy8040054
AL-GAZALI, L.; BENER, A.; ABDULRAZZAQ, Y.; MICALLEF, R.; AL-KHAYAT, A.; GABER, T. Consanguineous Marriages In The United Arab Emirates. Journal of Biosocial Science, v. 29, n. 4, p. 491-497, 1997.
ALI, Q.; ASHRAF, M. Induction of drought tolerance in maize (Zea mays L.) due to exogenous application of trehalose: growth, photosynthesis, water relations and oxidative defense mechanism. Journal of Agronomy and Crop Science, v. 197, p. 258– 271, 2011. https://doi.org/10.1111/j.1439-037X.2010.00463.x
AMINE, R.; ABLA, E. H.; MOHAMMED, B. I.; KHADIJA, O. The amendment with chitin and/or chitosan ımproves the germination and growth of Lycopersicon esculentum L., Capsicum annuum L. and Solanum melongena L. Indian Journal of Agricultural Research, v. 54, n. 4, p. 420-428, 2020. https://doi.org/10.18805/IJARe.A-452
AOSA. Association of Official Seed Analysts: Seed Vigor Testing Handbook. (Contribution to the Handbook on Seed Testing, 32). – AOSA, Ithaca, NY, 1983.
AOSA. Association of Official Seed Analysts: Seed Vigor Testing Handbook. (Contribution, 32) – AOSA, Ithaca, NY, 2002.
BEHBOUD, R.; MORADI, A.; FARAJEE, H. Effect of different chitosan concentrations on seed germination and some biochemical traits of sweet corn (Zea mays var. Saccharata) seedling under osmotic stress conditions. Iranian Journal of Seed Research, v. 7, n. 1, p. 1-22, 2020. https://doi.org/10.29252/yujs.7.1.1
BUSH, D.S. Calcium regulation in plant cells and its role in signaling. Annual Review of Plant Physiology and Plant Molecular Biology, v. 46, p. 95-122, 1995.
CHOU, C. H.; LIN, H. J. Autointoxication mechanism of Oryza sativa I. Phytotoxic effects of decomposing rice residues in soil. Journal of Chemical Ecology, v. 2, n. 3, p. 353-367, 1976.
CHOUDHARY, R. C.; KUMARASWAMY, R. V.; KUMARI, S.; SHARMA, S. S.; PAL, A.; RALIYA, R.; BISWAS, P.; SAHARAN, V. Zinc encapsulated chitosan nanoparticle to promote maize crop yield. International Journal of Biological Macromolecules, v. 127, p. 126-135, 2019. https://doi.org/10.1016/j.ijbiomac.2018.12.274
RUIZ-DE-LA-CRUZ, G.; AGUIRRE-MANCILLA, C. L.; GODINEZ-GARRIDO, N. A.; OSORNIO-FLORES, N. M.; TORRES-CASTILLO, J. A. Chitosan mixed with beneficial fungal conidia or fungicide for bean (Phaseolus vulgaris L.) seed coating. Interciencia, v. 42, n. 5, p. 307-312, 2017.
Desheva, G.; Petrova, S.; Deshev, M. Germinability of soybean seeds stored more than 30 years in the Bulgarian national seed genebank. World Scientific News, v. 69, p. 29-46, 2017.
DUTRA, A. S.; TEOFILO, E.M. Envelhecimento acelerado para avaliar o vigor de sementes de feijão caupi. Revista Brasileira de Sementes, v.29, n.1, p.193-197, 2007. https://doi.org/10.1590/S0101-31222007000100027
DUTRA, A.S.; MEDEIROS-FILHO, S.; TEOFILO, E.M. Condutividade eletrica em sementes de feijão caupi. Revista Ciência Agronômica, v.37, n.2, p.166-170, 2006. http://ccarevista.ufc.br/seer/index.php/ccarevista/article/view/195/189
EL GHAOUTH, A.; ARUL, J.; GRENIER, J.; ASSELIN, A. Antifungal activity of chitosan on two postharvest pathogens of strawberry fruits. Phytopathology, v. 82, n. 4, p. 398-402, 1992.
EL HADRAMI, A.; ADAM, L.R.; EL HADRAMI, I.;DAAYF, F. Chitosan ın plant protection. Marine Drugs, v. 8, n. 4, p. 968-987, 2010. https://doi.org/10.3390/md8040968
FAROOQ, M.; BASRA, S. M. A.; AHMAD, N.; HAFEEZ, K. Thermal hardening: a new seed vigor enhancement tool in rice. Journal of Integrative Plant Biology, v. 47, n. 2, p. 187-193, 2005. https://doi.org/10.1111/j.1744-7909.2005.00031.x
GU, R.; LI, L.; LIANG, X.; WANG, Y.; FAN, T.; WANG, Y.; WANG, J.; GU, R.; LI, L.; LIANG, X.; WANG, Y.; FAN, T.; WANG, Y. The ideal harvesting time for seeds of hybrid maize (Zea mays L.) XY335 and ZD958 produced in multiple environments. – Scientific Reports, v. 7, p. 17537, 2017. https://doi.org/10.1038/s41598-017-16071-4.
HAMEED, A.; SHEIKH, M.A.; HAMEED, A.; FAROOQ, T.; BASRAQ, S.M.A.; JAMIL, A. Chitosan seed priming improves seed germination and seedling growth in wheat (Triticum aestivum L.) under osmotic stress induced by polyethylene glycol. The Philippine Agricultural Scientist, v. 97, p. 294-299, 2014.
ILIC, Z.S.; FALLIK, E.; MANOJLOVIC, M.; KEVRESAN, Z.; MASTILOVIC, J. Postharvest practices for organically grown products. Contemporary Agriculture, v. 67, n. 1, p. 71-80, 2018. https://doi.org/10.2478/contagri-2018-0011
ISTA. International rules for seed testing bull., Zurich, Switzerland, 188, 2006.
KANAWI, M. A.; AL HAYDAR, M.; RADHI, W. N. Effect of chitin and chitosan in ımprovement of plant growth and anti-fungal activity. Egyptian Journal of Botany, v. 61, n. 2, p. 513-519, 2021. https://doi.org/10.21608/ejbo.2021.41084.1549
KAUR, S.; DHILLON, G.S. The versatile biopolymer chitosan: potential sources, evaluation of extraction methods and applications. Critical Reviews in Microbiology, v. 40, p. 155–175, 2014. https://doi.org/10.3109/1040841X.2013.770385
KAYA, C.; AK, B.E.; HIGGS, D. Response of salt-stressed strawberry plants to supplementary calcium nitrate and/or potassium nitrate. Journal of Plant Nutrition, v. 26, p. 543-560, 2003. https://doi.org/10.1081/PLN-120017664
KHAPTSEV, Z.; LUGOVITSKAYA, T.; SHIPOVSKAYA, A.; SHIPENOK, K. Biological activity of chitosan aspartate and its effect on germination of test seeds. In IOP Conference Series: Earth and Environmental Science, v, 723, n. 2, p. 022074, 2021. https://doi.org/ 10.1088/1755-1315/723/2/022074
MARCOS-FILHO, J. Seed vigor testing: an overview of the past, present and future perspective. Scientia Agricola, v.72, n.4, p.363-374, 2015. https://doi.org/10.1590/0103-9016-2015-0007
MARCOS-FILHO, J. Fisiologia de sementes de plantas cultivadas. FEALQ, Piracicaba, p. 495, 2005.
MARTINEZ-FERNANDEZ, D.; KOMAREK, M. Comparative effects of nanoscale zero-valent iron (nZVI) and Fe2O3 nanoparticles on root hydraulic conductivity of Solanum lycopersicum L. Environmental and Experimental Botany, v. 131, p. 128-136, 2016. https://doi.org/10.1016/j.envexpbot.2016.07.010
MONDO, V. H. V.; CICERO, S. M.; DOURADO-NETO, D.; PUPIM, T. L.; DIAS, M. A. N. Seed vigor and initial growth of corn crop. Journal of Seed Science, v.35, n.1, p.64-69, 2013.
NGUYEN, T. H.; THI, T. V.; NGUYEN, T. T.; LE, T. D.; VO, D. M. H.; NGUYEN, D. H.; NGUYEN, C. K.; NGUYEN, D. C.; NGUYEN, T. T.; BACH, L. G. Investigation of chitosan nanoparticles loaded with protocatechuic acid (pca) for the resistance of pyricularia Oryzae fungus against rice blast. Polymers, v. 11, n. 1, p. 177, 2019. https://doi.org/10.3390/polym11010177
ODAT, N.; TAWAHA, A. M.; HASAN, M.; AL-TAWAHA, A. R.; THANGADURAI, D.; SANGEETHA, J.; RAUF, A.; KHALID, S.; SARANRAJ, P.; AL-TAEY, D.K.A.; SAFARI, Z.S.; ZAHID, N.A.; QAZIZADAH, A.Z.; SIRAJUDDIN, S. N. Seed priming with chitosan alleviates salinity stress by improving germination and early growth parameters in common vetch (Vicia sativa). In IOP Conference Series: Earth and Environmental Science, v. 788, N. 1, p. 012059, 2021. https://doi.org/10.1088/1755-1315/788/1/012059
PANUCCIO, M. R.; JACOBSEN, S. E.; AKHTAR S. S.; MUSCOLO, A. Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB Plants, v. 6, 2014. https://doi.org/10.1093/aobpla/plu047
PARFENOVA, A. M.; LASAREVA, E. V.; AZOVTSEVA, N. A. Nanomagnetite and chitosan affect seed germination and growth of wheat (Triticum aestivum L.). Letters in Applied NanoBioScience, v. 10, n. 2, p. 2279-2288, 2020. https://doi.org/10.33263/LIANBS102.22792288
REYES-PEREZ, J. J.; RIVERO-HERRADA, M.; SOLORZANO-CEDENO, A. E.; CARBALLO-MENDEZ, F. D. J.; LUCERO-VEGA, G.; RUIZ-ESPINOZA, F. H. Application of humic acids, chitosan and mycorrhizal fungus influence pepper growth and development. Terra Latinoamericana, v. 39, 2021. https://doi.org/10.28940/terra.v39i0.833.
SAAVEDRA, G.M.; FIGUEROA, N. E.; POBLETE, L.A.; CHERIAN, S.; FIGUEROA, C.R. Effects of preharvest applications of methyl jasmonate and chitosan on postharvest decay, quality and chemical attributes of fragaria chiloensis fruit. Food Chemistry, v. 190, p. 448-453, 2016. https://doi.org/10.1016/j.foodchem.2015.05.107
SABIR, F.K.; SABIR, A.; UNAL, S.; TAYTAK, M.; KUCUKBASMACI, A.; BILGIN, O.F. Postharvest quality extension of minimally processed table grapes by chitosan coating. International Journal of Fruit Science, v. 19, n. 4, p. 347-358, 2019. https://doi.org/10.1080/15538362.2018.1506961
SHIEKH, R. A.; MALIK, M. A.; AL-THABAITI, S. A.; SHIEKH, M.A. Chitosan as a novel edible coating for fresh fruits. Food Science and Technology Research, v. 19, n. 2, p. 139155, 2013. https://doi.org/10.3136/fstr.19.139
SOUZA, T. C.; MAGALHAES, P. C.; CASTRO, E. M.; ALBUQUERQUE, P. E. P.; MARABESI, M. A. The influence of ABA on water relation, photosynthesis parameters, and chlorophyll fluorescence under drought conditions in two maize hybrids with contrasting drought resistance. Acta Physiologiae Plantarum, v. 35, p. 515–527, 2013. https://doi.org/10.1007/s11738-012-1093-9
TIAN, F.; CHEN, W.; FAN, G.; LI, T.; KOU, X.; WU, C. E.; WU, Z. Effect of ginkgo biloba seed exopleura extract and chitosan coating on the postharvest quality of ginkgo seed. Journal of the Science of Food and Agriculture, v. 99, n. 6, p. 3124-3133, 2019.
TOVAR, G. I.; BRICENO, S.; SUAREZ, J.; FLORES, S.; GONZALEZ, G. (2020). Biogenic synthesis of iron oxide nanoparticles using Moringa oleifera and chitosan and its evaluation on corn germination. Environmental Nanotechnology, Monitoring & Management, v. 14, p. 100350, 2020. https://doi.org/10.1016/j.enmm.2020.100350
WOLTZ, J. M.; TEKRONY, D. M. Accelerated aging test for corn seed. Seed Technology, v. 23, p. 21-34, 2001.
ZAYED, M. M.; ELKAFAFI, S. H.; ZEDAN, A. M.; DAWOUD, S. F. Effect of nano chitosan on growth, physiological and biochemical parameters of Phaseolus vulgaris under salt stress. Journal of Plant Production, v. 8, n. 5, p. 577-585, 2017. https://doi.org/10.21608/JPP.2017.40468
ZHOU, Y.G.; YANG, Y.D.; QI, Y.G.; ZHANG, Z.M.; WANG, X.J.; HU, X.J. Effects of chitosan on some physiological activity in germinating seed of peanut. Journal of Peanut Science, v. 31, p. 22-25, 2002.
Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site: www.ccarevista.ufc.br, e-mail: ccarev@ufc.br - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.